A Weizmann professor and an entrepreneur have patented a device that extracts carbon dioxide from the atmosphere and turns it into fuel. They say it has the potential to save life on our planet.
if this past summer felt hot to you, it’s not your imagination. Meteorologistspredict that 2015 will end up being the hottest year on record. There isscientific consensus that the culprit is global warming, caused by carbon dioxide emissions.
Nevertheless, global warming is a hairtrigger issue and that’s because combustion, the chemical reaction responsible for modern industry, produces carbon dioxide (CO2), and carbon dioxide produces global warming. It’s a fact of nature that we can’t wish away, yet we’re unwilling to give up the modern comforts of electricity, automobiles, skyscrapers and advanced technology. Humanity is caught in a tragedy of its own making — our greatest achievements could soon lead to our biological extinction.
“Our bodies absorb oxygen and combine it with the food we eat to produce energy. We emit carbon dioxide when we breathe. But the carbon dioxide breathed out by animals is absorbed by plants and trees. Using the energy of the sun, they convert it back into carbon (carbohydrates) which makes their trunk and branches, and they emit oxygen back into the atmosphere.”
This natural balance, says Banitt, was first disturbed when our human ancestors made fire, combining the carbon in firewood with oxygen in the air to produce energy and CO2. But the amounts of excess CO2 were very small and nature adjusted itself.
Once we started burning coal and oil, however, there were not enough plants to absorb all the excess CO2.
“The quantities are immense. At present humanity is emitting 40 billion tons of CO2 per year above the natural balance. The problem is that CO2 gas emitted into the atmosphere creates a kind of blanket that prevents heat from leaving the atmosphere to go into space, and this is causing temperatures to rise slowly, which is climate change.”
About twenty years ago, says Banitt, scientists developed technologies to capture up to 90 percent of CO2 emissions before they hit the atmosphere.
“But the technology is expensive, and then you have 40 billion tons of carbon dioxide each year. What do you do with it? The original idea was to bury it in geological formations, but that’s like setting a bomb to go off 200 years from now.”
Indeed, some scientists argue that burying carbon dioxide can trigger earthquakes and that even a small earthquake can cause leaks that will defeat the purpose of the burial.
According to Banitt, there are a handful of companies worldwide that allow you to do something useful with the carbon dioxide you’ve captured. New CO2 Fuels allows you to get rid of the carbon dioxide and make money in the process.
“We basically recycle the carbon dioxide.”
What New CO2 Fuels does is reverse the combustion process. It takes CO2 and extracts the oxygen by injecting energy into it.
“We extract the oxygen — which is a good product in its own right. We’re left with carbon monoxide (CO) and hydrogen. That’s a gas known as syngas (synthetic gas) and there are lots of people around the world who know how to convert it into methanol, ethanol, gasoline, kerosene ammonia, urea, plastics, you name it.”
Where do you get the energy to do this?
“We can take it from the sun. And there are many industries producing a lot of heat that gets wasted. For instance, steel mills burn a lot of coal and gas to melt the ore. It’s the same with glass, cement and other metals.”
Bannit says it’s a no-brainer for a steel mill to use his technology.
“You have a lot of heat that you’re wasting. You have a lot of CO2 that the regulator is pressuring you to reduce. Instead of wasting both of them, put them into our system and generate fuel, plastic or fertilizers.”
Yes, but if people go out and burn those fuels how are you reducing CO2 emissions?
“Imagine a steel plant that emits 10 million tons of CO2 per year. The plant is next to a town with 20,000 cars that emit another million tons of CO2 per year. Instead of buying oil from the oil company, the city can buy fuel from the steel mill which it generated using its heat and CO2. Previously, you had 11 million tons of carbon dioxide emissions. Now you take a million tons of CO2 from the steel mill and convert it back to fuel. So you only have 10 million tons of emissions.”